The generator matrix 1 0 0 0 1 1 1 2 0 1 1 1 2 1 2 0 2 2 1 2 1 2 0 0 1 1 0 1 1 1 0 1 1 X+2 X+2 X+2 X+2 1 1 1 X 1 1 X+2 0 1 1 X+2 X X+2 X+2 1 1 2 X 0 1 X+2 1 X 1 1 1 1 1 1 1 X+2 X+2 1 1 2 1 X+2 X+2 1 1 X 1 2 0 1 1 1 X+2 X 0 1 0 1 0 1 0 0 0 2 2 2 1 X+3 X+1 X+3 1 X+1 1 1 1 0 2 2 X+3 1 1 X X+2 3 1 1 X 3 X+2 X+2 X+1 1 1 2 X 0 X+3 1 1 1 3 1 1 X+2 X 2 1 1 X+2 X+3 1 1 2 1 X 1 3 1 X+2 X+1 0 3 X+2 3 X+2 1 0 2 X+1 1 X+1 X+2 X X+3 X 0 X+1 X 1 X+3 3 0 1 X 1 0 1 1 0 0 1 0 2 1 3 1 X+1 1 2 3 X+1 0 0 2 X+3 1 0 1 2 2 X+3 X X+2 X+1 X+2 2 X+3 X+3 1 1 X 0 3 X 1 X+2 X+2 X+2 X 3 3 1 3 2 3 1 0 X 1 X+1 X+2 3 0 3 X+2 2 X+2 X+3 X+1 X+3 X+3 X+1 1 X+3 0 X+3 1 X+2 X+1 1 0 0 X+2 X+2 X+1 0 X+2 X X+3 X+3 0 X+1 0 2 X+2 3 X 1 0 0 0 1 X+3 X+3 0 X+1 2 0 2 X+3 1 X+1 3 X X+1 X X+2 1 X X+3 X+2 1 3 0 3 X+1 1 X+1 1 2 X X X+3 1 2 X X+1 0 X 2 1 0 X+1 X+2 X 2 2 X+1 X+3 X+2 X+2 2 1 1 X+1 X+3 X+3 X+1 0 X+1 2 2 1 3 2 3 1 3 3 X+3 X 1 1 0 X 1 1 1 3 2 1 1 3 1 X+1 X X+2 X generates a code of length 90 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 84. Homogenous weight enumerator: w(x)=1x^0+366x^84+882x^86+742x^88+672x^90+510x^92+368x^94+194x^96+152x^98+112x^100+54x^102+22x^104+16x^106+4x^108+1x^112 The gray image is a code over GF(2) with n=360, k=12 and d=168. This code was found by Heurico 1.16 in 3.39 seconds.